CS 4530: Fundamentals of Software Engineering

Module 10.2: Case Studies

Adeel Bhutta, Jan Vitek and Mitch Wand
Khoury College of Computer Sciences

© 2023 Released underthe CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* By the end of this lesson you should be
able to:

* Briefly describe several typical examples of
distributed systems

 Briefly describe how each of them deals with
scalability, fault tolerance, etc.

Case Study 1: the Network File
System NFS

* NFS is a distributed file system: multiple clients can
read/write the same files

« Created in 1984, still widely used

« In a UNIX (POSIX-compliant) operating system, files
are stored in a tree from “/”

« Access a remote file by name like
/username@remotehost/path/to/remote/file

« Or you could "mount” a remote filesystem to access it
locally

NFS is a Monolithic Shared
Filesystem

» All files are stored on a single server

 To list files in a directory, clients make request to
server

« To read or write files, clients make request to server

 Clients might “lock” files to prevent concurrent
updates

« Assuming that scale, throughput, fault tolerance
requirements are relatively low, this is an acceptable
architecture

* This architecture is the easiest to build fast and
correctly

Case Study 2: GFS (Google File
System, ~2010)

« Stated requirements:

- "High sustained bandwidth is more
important than low latency. Most of our
target applications place a premium on
processing data in bulk at a high rate,
while few have stringent response time
requirements for an individual read or

write.”

GFS is a tiered filesystem with two tiers:
Metadata and File Chunks

« Example: GFS (Google File System, c
2010)

Where is file /foo/bar?

GFS Metadata tier stores where files

GFS Client Metadata are stored, in 128 MB chunks

l_ ' List of chunks and their locations
GFS Client t\»

eads chunks from the specific Chunk Servers
known to have them

ChunkServer

ChunkServer

ChunkServer § ChunkServer § ChunkServer § ChunkServer

ri

ChunkServer § ChunkServer B ChunkServer § ChunkServer § ChunkServer § ChunkServer

ChunkServer @ ChunkServer § ChunkServer § ChunkServer @ ChunkServer § ChunkServer

ChunkServer § ChunkServer B ChunkServer § ChunkServer § ChunkServer § ChunkServer

l

ervers

Case Study 3: Domain Name System
(DNS)

 Nodes (hosts) on a network are identified by
IP addresses

. E.g.: 142.251.41.4

« We humans prefer something easier to
remember: calendar.google.com,
facebook.com,
www.khoury. northeastern.edu

 We need to keep a directory of domain
names and their addresses

« We also need to make sure everybody gets
directed to the correct host

Requirements for the DNS system

* Need to handle millions of DNS queries
per second

* Not immediately obvious how to scale:
how do we maintain replication, some
measure of consistency?

http://facebook.com/

DNS distributed system goals

 We need a scalable solution
 New hosts keep being added
« Number of users increases
 Need to maintain speed/responsiveness

« We need our service to be available and
fault tolerant

It is a crucial basic service
« A problematic node shouldn’t “crash the internet”

 Reads are more important that writes: far more
queries to resolve records than to update them

« Global in scope
« Domain names mean the same thing everywhere

Strawman solution A: monolithic

architecture

- Route all requests to a server
with a well-known address.

 All requests made to this
server:

« Single point of failure

« Bottleneck for throughput and
access time (billions of queries
per day; access time in msecs)

« Bottleneck for administration
(adding/changing records?)

« Ultimately, not scalable!

A-root Query Volume (Millions/Day)

https://a.root-servers.org/metrics

10

Strawman solution B: Use a local file

 Keep local copy of mapping from all hosts to
all IBS (e.qg.,)Deytc/hostgf) J

« Space requirements are feasible now
« IPv4 space is now full
« 32-bits: 4,294,967,296 addresses
« At 1 byte per address, file would be 4GB

« Not a lot of disk space now, but DNS was
introduced in the late 80s.

« BUT hosts change IPs regularly, so need to
download file frequently

e Lot of constant internet bandwidth use
 Not scalable!

11

A tiered architecture vyields a scalable
solution

- Idea: break apart responsibility for each
part of a domain name (zone) to a

different group of servers

« Each zone is a continuous section of the
name space, eg *.northeastern.edu

« Each zone has an associated set of name
servers.

DNS partitions responsibility by “layers”.

Root Servers

Administrational

Tree search [+edu |
in DNS |

[*.northeastern.edu]

[*.khoury.northeastern.edu.]

[*.registrar.northeast\grn.edu.]

\

[* law.northeastern.edu.]

14

Updating | tedu |
name servers |

[*.northeastern.edu]

/\

*.khour .northeastern.edu.] .
[Y [*.registrar.northeastern.edu.]

\

[course.khoury.northeastern.edu.]

15

This is an example of a tiered
architecture

« Each server need only needs to know
about its immediate descendants in its
zone.

[t only processes requests about a single
zone.

« Both data and processing are limited to
requests about this zone- any other
requests are delegated to this server’s
parent server.

16

But some zones are too big and too
busy to be handled by a single server

- Eg, .edu, .com, .gov, etc.
» SO these servers are replicated.

17

There is replication even within the
root servers

« 13 root servers
e [a-m] .root-servers.orqg

- E.g., d.root-servers.org

* But each root server has multiple copies of
the database, which need to be kept in
sync.

 Somewhere around 1500 replicas in total.

Case Study 4: Reliable Real-Time Chat

* Requirements: "Must support real-time
text chat for 2,000 users exchanging
messages. Must have best-effor
delivery in real-time, and guarantee
that all messages acknowledged are
preserved.

« Challenge: Real-time “best-effort” delivery
has conflicting requirements (low latency
at expense of fault tolerance) with
8uarantee|ng all messages are eventually

elivered (fault toleranCe at expense of
latency)

A reliable real-time chat could use separate
processing units for each requirement.

« Requirements: “Must support real-time text chat for
2,000 users exchanging messages. Must have best-
effort delivery in real-time, and guarantee that all
messages acknowledged are preserved.”

« Allocate separate processing units for these
requirements:

« “Real time” component optimizes for speed and
availability (sacrificing fault-tolerance)

« “Persistence” component optimizes for fault-tolerance,
sacrificing speed and availability

« Event queue service receives events, dispatches to
both processing units and is fault tolerant

Block diagram for a real-time chat
service

Learning Goals for this Lesson

* By the end of this lesson you should be
able to:

* Briefly describe several typical examples of
distributed systems

 Briefly describe how each of them deals with
scalability, fault tolerance, etc.

	CS 4530: Fundamentals of Software Engineering��Module 10.2: Case Studies
	Learning Goals for this Lesson
	Case Study 1: the Network File System NFS
	NFS is a Monolithic Shared Filesystem
	Case Study 2: GFS (Google File System, ~2010)
	GFS is a tiered filesystem with two tiers:�Metadata and File Chunks
	Case Study 3: Domain Name System (DNS)
	Requirements for the DNS system
	DNS distributed system goals
	Strawman solution A: monolithic architecture
	Strawman solution B: Use a local file
	A tiered architecture yields a scalable solution
	DNS partitions responsibility by “layers”.
	Tree search in DNS
	Updating name servers
	This is an example of a tiered architecture
	But some zones are too big and too busy to be handled by a single server
	There is replication even within the root servers
	Case Study 4: Reliable Real-Time Chat
	A reliable real-time chat could use separate processing units for each requirement.
	Block diagram for a real-time chat service
	Learning Goals for this Lesson

